Identified Hybrid tRNA Structure Genes in Archaeal Genome
نویسندگان
چکیده مقاله:
Background: In Archaea, previous studies have revealed the presence of multiple intron-containing tRNAs and split tRNAs. The full unexpurgated analysis of archaeal tRNA genes remains a challenging task in the field of bioinformatics, because of the presence of various types of hidden tRNA genes in archaea. Here, we suggested a computational method that searched for widely separated genes encoding tRNA halves to generate suppressive variants of missing tRNAs. Objectives: The exploration of tRNA genes from a genome with varying hypotheses, among all three domain of life (eukaryotes, bacteria and archaea), has been rapidly identified in different ways in the field of bioinformatics. Like eukaryotic tRNA genes, it has been established that two separated regions of the coding sequence of a tRNA gene are essential and sufficient for promotion of transcription. Our objective is to find out the two essential regions in the genome sequence which comprises two halves of the hidden tRNAs. Material and Methods: Considering the existence of split tRNA genes widely separated throughout the genome, we developed our tRNA search algorithm to predict such separated tRNA genes by searching both a conserved terminal 5'- and 3'-motif of tRNA in agreement with the split hypothesis on the basis of cloverleaf prediction and precise insilico determination of bulge-helix-bulge secondary structure at the splice sites. Results: By a comprehensive search for all kinds of missing tRNA genes, we have constructed hybrid tRNA genes containing one essential region from tDNA (XYZ) and the other from tDNA (ABC), both from same species in the archaea. We have also found, this type of hybrid tRNA genes are identified in the different species of the archaea (XYZ: ASN, ARG and MET; ABC: ASP,SER, ARG and PRO).These hybrid split tRNA share a common structural motif called bulge-helix-bulge (BHB) a more relaxed bulge-helix loop (BHL), at the leader exon boundary and suggested to be evolutionary interrelated. Conclusions: Analysis of the complete genome sequences of Metallosphaera sedula DSM 5348, Desulfurococcus kamchatkensis 1221n and Ignicoccus hospitalis KIN4/I in archaea by our algorithm revealed that a number of hybrid tRNAs are constructed from different tDNAs . Asymmetric combination of 5’ and 3’ tRNA halves may have generated the diversity of tRNA molecules. Our study of hybrid tRNA genes will provide a new molecular basis for upcoming tRNA studies.
منابع مشابه
Identity elements of archaeal tRNA.
Features unique to a transfer-RNA are recognized by the corresponding tRNA-synthetase. Keeping this in view we isolate the discriminating features of all archaeal tRNA. These are our identity elements. Further, we investigate tRNA-characteristics that delineate the different orders of Archaea.
متن کاملtRNA genes and retroelements in the yeast genome.
A survey of tRNA genes and retroelements (Ty) in the genome of the yeast Saccharomyces cerevisiae is presented. Aspects of genomic organization and evolution of these genetic entities and their interplay are discussed. Attention is also given to the relationship between tRNA gene multiplicity and codon selection in yeast and the role of Ty elements.
متن کاملArchaeal aminoacyl-tRNA synthesis: diversity replaces dogma.
Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Invest...
متن کاملCoexistence of bacterial leucyl-tRNA synthetases with archaeal tRNA binding domains that distinguish tRNALeu in the archaeal mode
Leucyl-tRNA (transfer RNA) synthetase (LeuRS) is a multi-domain enzyme, which is divided into bacterial and archaeal/eukaryotic types. In general, one specific LeuRS, the domains of which are of the same type, exists in a single cell compartment. However, some species, such as the haloalkaliphile Natrialba magadii, encode two cytoplasmic LeuRSs, NmLeuRS1 and NmLeuRS2, which are the first exampl...
متن کاملNucleotide sequence of three tRNA genes from tomato chloroplast genome.
Clones including tRNA genes from tomato {Lycopersicon esculentum) chloroplast DNA have been obtained. Here we report the nucleotide sequence of tmH\ trnD-^ and tmL\ Sequences were determined by the dideoxy method (1). In higher plant chloroplast genomes, tmY and trnD are clustered together with trnE in the large single copy (LSQ region (2). The sequence of trnY reveals 100% identity with its co...
متن کاملThe UCSC Archaeal Genome Browser
As more archaeal genomes are sequenced, effective research and analysis tools are needed to integrate the diverse information available for any given locus. The feature-rich UCSC Genome Browser, created originally to annotate the human genome, can be applied to any sequenced organism. We have created a UCSC Archaeal Genome Browser, available at http://archaea.ucsc.edu/, currently with 26 archae...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 3
صفحات 1- 8
تاریخ انتشار 2019-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023